The Topological Directional Entropy of 2 - actions Generated by Linear Cellular Automata

نویسنده

  • Hasan Akın
چکیده

In this paper we study the topological directional entropy of 2  -actions by generated linear cellular automata (CA hereafter), defined by a local rule f[l,r], l, r , l  r, i.e. the maps Tf[l, r]: m m      which are given by Tf[l, r](x) = ( ) n n y   , yn = f(xn+l, ..., xn+r) = r x i n i i l     (mod m), x=    n n x ) (  m   and f: 1 r l m     Zm, over the ring Zm (m  2), and the shift map acting on compact metric space m   . We give a closed formula, which can be efficiently and rightly computed by means of the coefficients of the local rule f, for the topological directional entropy of 2  -action generated by the pair (Tf[l, r], ) in the direction θ. We generalize the results obtained by Akın [The topological entropy of invertible cellular automata, J. Comput. Appl. Math. 213 (2) (2008) 501 – 508] to the topological entropy of any invertible linear CA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Quantitative Behavior of the Linear Cellular Automata

In this paper, we study the quantitative behavior of one-dimensional linear cellular automata Tf [−r,r], defined by local rule f(x−r, . . . , xr) = r ∑ i=−r λixi (mod m), acting on the space of all doubly infinite sequences with values in a finite ring Zm, m ≥ 2. Once generalize the formulas given by Ban et al. [J. Cellular Automata 6 (2011) 385-397] for measure-theoretic entropy and topologica...

متن کامل

Entropy and Applications of Cellular Automata

In this paper I will provide an introduction to the theory of cellular automata and review a paper by Michele D’amico, Giovanni Manzini, and Luciano Margara [3], On computing the entropy of cellular automata, in which the authors study the topological entropy of cellular automata. The main problems addressed are proving a closed form for the topological entropy of D-dimensional linear cellular ...

متن کامل

On Computing the Entropy of Cellular Automata

We study the topological entropy of a particular class of dynamical systems: cellular automata. The topological entropy of a dynamical system (X; F) is a measure of the complexity of the dynamics of F over the space X . The problem of computing (or even approximating) the topological entropy of a given cellular automata is algorithmically undecidable (Ergodic Theory Dynamical Systems 12 (1992) ...

متن کامل

The Topological Pressure of Linear Cellular Automata

This elucidation studies ergodicity and equilibrium measures for additive cellular automata with prime states. Additive cellular automata are ergodic with respect to Bernoulli measure unless it is either an identity map or constant. The formulae of measure-theoretic and topological entropies can be expressed in closed forms and the topological pressure is demonstrated explicitly for potential f...

متن کامل

Entropy rate of higher-dimensional cellular automata

We introduce the entropy rate of multidimensional cellular automata. This number is invariant under shift–commuting isomorphisms; as opposed to the entropy of such CA, it is always finite. The invariance property and the finiteness of the entropy rate result from basic results about the entropy of partitions of multidimensional cellular automata. We prove several results that show that entropy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008